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Abstract. Recently, personal digital assistants like cellular phones are
shifting to IP terminals. The encoding-decoding process utilized for trans-
mitting over IP networks deteriorates the quality of speech data. This de-
terioration causes degradation in speech recognition performance. Acous-
tic model adaptations can improve recognition performance. However,
the conventional adaptation methods usually require a large amount of
adaptation data. In this paper, we propse a novel acoustic model adapta-
tion technique that generates “speaker-independent” HMM for the tar-
get environment based on the learning-by-doing concept. The proposed
method uses HMM-based speech synthesis to generate adaptation data
from the acoustic model of HMM-based speech recognizer, and conse-
quently does not require any speech data for adaptation. By using the
generated data after coding, the acoustic model is adapted to codec
speech. Experimental results on G.723.1 codec speech recognition show
that the proposed method improves speech recognition performance. A
relative word error rate reduction of approximately 12% was observed.
Keywords: Speech Recognition, Model Adaptation, Codec Speech,
Speech Synthesis, Learning-by-Doing

1 Introduction

In recent years, telephone speech recognition systems encompassing thousands
of vocabularies have become practical and widely used [1,2]. These systems are
generally utilized by automatic telephone services for booking an airline ticket,
inquiring about stock, receiving traffic information, and so on. However, the
recognition accuracy of cellular phones is still inadequate due to compression
coding or ambient noise [3-5].

Recently, personal digital assistants like cellular phones are shifting to IP
terminals. For transmission over IP networks, speech data must be encoded at
the sending end and subsequently decoded at the receiving end. This coding
process deteriorates the quality of the voice data. Although most people can not
notice this deterioration, it seriously affects the performance of those speech rec-
ognizers not designed for low-quality voice data[6]. The major causes of speech
recognition performance degradation are : distortion in the transmission envi-
ronment (transmission error and packet loss), and low bitrate speech coding (loss
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of speech information). These distortions cause a mismatch between the feature
vectors of input speech and acoustic models(7, 4].

The best way to overcome this degradation is by collecting a large amount of
data in the target enviroment and training acoustic models using them. However,
this method requires huge costs. Adaptation methods, such as MLLR (Maxi-
mum Likelihood Linear Regression) [8] or MAP (Maximum A Posterior proba-
bility)[9] also require a large amount of adaptation data to estimate “speaker-
independent” models[3]. Actually, in [3] they used at least 1,000 utterances from
30 speakers to estimate codec-dependent HMMs.

We propose in this paper novel adaptation methods based on a learning-by-
doing concept, in which a speech recognition system utters sentences in a target
environment and adapts acoustic models by listening to them. This method does
not need codec speech data for adaptation because these data are generated by
speech synthesis from the acoustic model. By using the generated data after
coding, the acoustic model is adapted to codec speech. Consequently, this method
can adapt the acoustic model to various codec speech without any speech data
if the coding method is specified.

Presented in section 2 is the effect of the speech coder for use with IP tele-
phones on speech recognition. Section 3 presents our approach and section 4
presents our experiments, followed by conclusions and an outline for future work.

2 Infuluence of the speech codec on speech recognition

2.1 Baseline method

In codec speech recognition, the easiest and ideal method is to use an acoustic
model that is trained with codec speech. A diagram of this training method is
shown in Figure 1. This method requires a large quantity of codec speech for
training an accurate acoustic model.

In order to verify the effect of the speech coder on speech recognition. we
evaluated recognition performance using an acoustic model which was trained
with codec speech.

For the speech coder, we selected the G.723.1 Annex A (6.3 and 5.3 kbps)[10]
which has the lowest bitrate in the ITU-T H.323 recommendation[11].

2.2 ITU-T G.723.1 speech codec

The G.723.1 standard[10] is an analysis-by-synthesis linear predictive coder and
it provides a dual coding rate at 6.3 and 5.3 kbps. For the higher rate of 6.3kbps.
the encoder uses multipulse maximum likelihood quantization (MP-MLQ). For
the lower late of 5.3kbps, the encoder employs an algebraic code excited linear
prediction (ACELP) scheme. An option for variable rate operation is available
using voice activity detection (VAD), which compresses the silent portions.
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Fig. 1. A diagram of training method

Table 1. Acoustic analysis conditions

sampling rate | 8 kHz

window Hamming

FFT point 256

frame length | 25 ms

frame shift 10 ms

feature vector | 0-12 mel-cepstral coefficients[13](CMS)
+ delta + delta-delta (total 39)

2.3 Experimental conditions

The baseline acoustic models (baseline model) were trained with ASJ speech
databases of phonetically balanced sentences|15]. Training data consist of 5,168
utterances (sampled 8kHz and 16bit) from 103 male speakers. The codec speech
acoustic models (codec speech HMM) were trained with the same training data
but they were coded by G.723.1 Annex A (6.3kbps, 5.3kbps). For the open
test set, 100 utterances (1,578 words) from 23 male speakers, which are the
utterences of Japanese standard dictation task in Japanese newspaper article
sentence speech corpus (JNAS)(15], were used. The acoustic analysis conditions
are shown in Table 1. The speech signals were windowed by a 25ms Hamming
window with a 10ms shift, the mel-cepstral coefficients were obtained by mel-
cepstral analysis(12, 13]. The 39-dimensional feature vector was comprised of 13
mel-cepstral coefficients (0-12th with CMS) including their delta and delta-delta
coefficients. We utilized a SPTK[13] for acoustic analysis and HTK[14] for HNM
training.

Table 2 shows Japanese phoneme set in our system. The “silB” and “silE”
denote the silence at the beginning/end of the speech. For the acoustic model.
shared state triphone HMMs with sixteen Gaussian mixture components per
state were trained. The number of states was approximately 1.000. We used
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Table 2. Japanese phonemes in our system

vowels aiueo
long vowels a:i:u:e: o
bdgptkmnrwy

consonants chjshtsf{hsz

by gy hy ky my ny py ry
choked sound q
syllabic nasal N
silence silB silE sp

Table 3. Word accuracy of the baseline and codec speech HMM for G.723.1 codec
speech

Acoustic Model [bitrate of codec speech
6.3kbps  5.3kbps
baseline model 80.4 % 76.1 %
codec speech HMM| 83.0 % 80.7 %

a Julius[16,17] for the recognizer with a 20,000-word lexicon and the tri-gram

language model.
The recognition performance is evaluated by word accuracy using the follwing

equation :

N-D-8-1
AY
where N is the total number of words, D is the number of deletions, S is the

number of substitutions, and I is the number of insertions.

- 100 (%), (1)

Accuracy =

2.4 Evaluation of codec speech model

Table 3 shows evaluation results of the baseline model and codec speech HMM.
From the figure, the word accuracy of the codec speech is lower than that of
uncoded speech. Also, codec speech HMM achieved higher performance than
that of uncoded speech HMM (baseline model).

These results indicate that HMM trained with codec speech data can improve
the recognition performance for codec speech. However, it is difficult to obtain a
large quantity of codec speech data for every coding method. Therefore. HMM
adaptation methods that do not require large quantities of codec speech data

are desired.

3 Adaptation using synthetic speech

A problem of conventional HMM adaptation methods is that they require a large
quantity of training data for adaptation. The proposed method generates adapta-
tion data from the HMM using a HMM-based speech synthesizer. Figure 2 shows
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Fig. 2. Adaptaion method using speech synthesis based on HMM

a diagram of the proposed method. This method consists of HMM-based speech
synthesis and HMM adaptation by the codec synthetic speech. The proposed
adaptation process is : First, the HMM-based speech synthesizer generates (1)
503 phonetically-ballanced sentences[18], or (2) speech waveforms corresponding
to all output distributions of all states. Next. a speech coder encodes and decodes
these waveforms. Finally, baseline HMM is adapted using the encode-and-decode
waveforms. This method does not require speech data for adaptation and it is
applicable to any coder if the input and output of a waveform is known.

3.1 HMM-based speech synthesis

In this section, we describe the the HMM-based speech parameter generation
algorithm according to [12).

Let g = {q1,qs, -, gr} be the state sequence and o = [0}, 04, -, 0%4] be the
vector of the output parameter sequence generated along with a single path q in
the same manner as the Viterbi algorithm. The output distribution of each state
is assumed to be a single Gaussian distribution for convenience of explanation.

For a given continuous HMM . the output speech parameter sequence o is
obtained by maximizing P(q, o[\, T') with respect to q and o. Since all HMMs
used in the system were left-to-right models with no skipping, the probability of
state sequence q is determined only by explicit state duration densities Pqe(dy).
i.e., the probability of d, consecutive observations in state ¢. This HMM ) is the
baseline IIMM in Figure 2. Let a, be a scaling factor on state duration scores and
Const. be the normalization factor of Gaussian distributions. then the logarithm
of P(q.o|\,T) can be written as :

logP(q, 0|\, T)
= aqlog(q|\, T) + logP(o|q, N\, T)
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K
1
=ay ZIOEqu(qu) - Eloglzl

k=1
—%(o - p)' 2 Yo - p) — Const. (2)
where
B= (Bqrr Bgzr - *s Har) ®)
¥ = diag{Zq1, Tg2. - - » Tl (4)

and pg, and Xy, are the mean vector and the covariance matrix associated with
state g. respectively. We assume that the total number of states which have
been visited during T frames is K (Z,’;l dow = T).

By using a MLSA (Mel Log Spectral Approximation) filter(19] speech is syn-
thesized from the generated sequence o.

3.2 Acoustic model adaptation using synthesized 503 sentences

The first adaptation method is simple. First, the HMNM-based speech synthesizer
generates 503 phonet ically-ballanced sentences(18]. We consider that the synth-
sized speech was uttered by one “speaker-independent” speaker because it is
synthesized from a “speaker-independent” HMM. Next, a speech coder encodes
and decodes these utterances. Finally, a codec-speech HMM is estimated with
MLLR using these codec utterances. One full matrix for a global regression class
is used as a transformation matrix of MLLR(8).

3.3 Acoustic model adaptation using waveforms corresponding to
mean vectors

The second proposed method uses synthetic speech segments corresponding to
the mean vector of each output distribution.
The output distribution of state i is defined as follows:

M

b,(0) = Y mN (0 pyy Zim) 1SiSN ()
k=1

N(o,p. X)

—_- __1_ _ 1y—1 _

~ e B -5l — ) B e =) (©)

where Al is the number of Gaussian mixtures, N is the number of states, Kim

the mean vector and X, is the covariance for the output probability functions

of mixture m at state i. ¢,m is the mixture weight of mixture m at state i
The toilowing process is performed on all output distributions:
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Fig. 3. Japanese vowel (/a/,/i/,/u/,/e/,/o/) spectrums and waveforms generated from
the mel-cepstral coefficients

- Generate L frame speech from the mean vector py,,,. using the speech syn-

thesis algorithm described in section 3.1.

- Encode and decode the synthetic speech by a speech coder and decoder.
- Analyze the mel-cepstral coefficients (c},cj, - - -, ¢} ) from the codec speech.
- Replace the mean mel-cepstral coefficients,

L
& = ZI:l < (7)

= y

L

with the mean vector p,,,, of the HMM. The delta and delta-delta parameters
are not adapted in this paper.

Figure 3 shows an example of the Japanese vowel (/a/,/i/,/u/./e/./o/) spec-

trums and waveforms generated from the mel-cepstral coeflicients of the HMM
Mmean vectors.
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4 Experiments

To evaluate the proposed methods, we compared the recognition performance of
the following HMMs :

1. the HMM trained by uncoded speech (baseline model),

2. the HMM adapted using 503 synthetic speech described in section 3.2 (508
sentences),

3. the mean-vector adapted HMM described in section 3.3 (mean-vector based),

4. the HMM trained with codec speech training data (codec speech HMM).

We consider that codec speech HMM shows the upper limit of the proposed
method.

4.1 Conditions

Acoustic analysis and HMM training conditions are the same as detailed in
section 2.3. The feature vector is comprised of 13 mel-cepstral cocfficients (0-
12th), and their delta and delta-delta cocfficients. For the acoustic model, shared
state triphone HMMs with sixteen Gaussian mixture components per state were
trained.

For the mean-vector based adaptation method, the adaptation data corre-
sponding to each distribution of each state, were generated at a 150 Hz pitch
frequency by the MLSA filter. From a preliminary experiment, the adaptation
data for unvoiced sounds were also excited with a 150 Hz pitch. For this exper-
iment the length of each data was 0.3 seconds.

4.2 Experimental results

The experimental results are provided in Table 4. As shown by this table, the
mean-vector based adaptation method improves the word accuracy of the base-
line model. The proposed method was effective in both G.723.1 Annex A coders
of 6.3kbps and 5.3kbps. We observed an improvement in word accuracy of ap-
proximately 1.5 points (8% relative error reduction) at 6.3kbps and about 3
points (12% relative error reduction) at 5.3kbps. The proposed method slightly
degrades the recognition performance of the codec speech HMM. However, the
proposed method did improve the recognition performance of the baseline with-
out any training speech.

On the other hand, the HMM adapted using 503 synthetic speech did not
improve the accuracy. One reson for this discrepancy may be that we did not
study the structure of MLLR transformation matrix sufficiently. We also expect
an essential problem is that the synthetic speech was one average speaker’s voice-
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Table 4. Word accuracy of proposed method for G.723.1 codec speech

HMM or bitrate of codec speech
adaptation method| 6.3kbps  5.3kbps
baseline model 80.4 % 76.1 %
508 sentences 76.3 % 73.5 %
mean-vector based | 82.0 %  79.0 %
codec speech HMM | 83.0 % 80.7 %

5 Summary

In this paper, we propose novel acoustic model adaptation methods based on a
learning-by-doing concept, in which a speech recognition system utters sentences
in a target environment and adapts acoustic models by listening to them. The
proposed methods generate adaptation data from the acoustic models (HMMs)
by using HMM-based speech synthesis. By using the generated data after coding,
the system adapt the acoustic models using these data. Experimental results
of G.723.1 codec speech recognition indicated that the proposed mean-vector
based adaptation method improved the recognition accuracy of codec speech
when compared to the non-adaptation HMM. Additionally the word accuracy
of the proposed method approaches that of the codec speech HMM.

For this study, only the MFCC mean vectors of HMM were adapted. Cyp
rently we are trying to adapt the covariance matrix. In the future, the propc
method will be adapted to other coding and environments.
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